Optimal Dynamic Regret via Multiple Learning Rates

Jun 18, 2025 · 6 min read

I describe the basic idea of Zhang et al., NeurIPS ‘18: “Adaptive online learning in dynamic environments,” which is a nice application of the multiple-learning-rate technique to non-stationary online convex optimization (OCO). The algorithm achieves an $O(\sqrt{T(1+P_T)})$ dynamic regret bound, where $P_T$ is the path length. Before this work, the best known upper bound was $O((1+P_T)\sqrt{T})$ due to Zinkevich (2003). Zhang et al. (2018) also provides a lower bound of $\Omega(\sqrt{T(1+P_T)})$, hence the bound is optimal.

Problem Setting

  • $\mathcal{W} \subseteq \R^d$ is a closed convex domain.
  • Bounded domain: $\|w - w'\| \leq 1$ for all $w, w' \in \mathcal{W}$ and $0 \in \mathcal{W}$.
  • $f_t \colon \mathcal{W} \to \R$ is a convex loss function at round $t$.
  • Bounded gradients: $\|\nabla f_t(w)\| \leq G$ for all $w \in \mathcal{W}$ and $t$.

Online Learning Protocol

For $t = 1, 2, \ldots, T$:

  1. Learner plays $w_t \in \mathcal{W}$ ($w_1$ is arbitrary).
  2. Environment reveals $f_t$ (offering gradient access for any $w \in \mathcal{W}$).
  3. Learner incurs loss $f_t(w_t)$ and computes $w_{t+1} \in \mathcal{W}$ based on observed information.

Regret and Dynamic Regret

Let $u_1, \ldots, u_T \in \mathcal{W}$ be unknown comparators. In the static setting, $u_1 = \cdots = u_T = u$.

  • Static Regret: $\sum_{t=1}^T \left(f_t(w_t) - f_t(u)\right)$

  • Dynamic Regret: $\sum_{t=1}^T \left(f_t(w_t) - f_t(u_t)\right)$

Online Gradient Descent (OGD)

  • Learning rate: $\eta > 0$
  • Update rule: $$w_{t+1} = \arg\min_{w \in \mathcal{W}} \|w_t - \eta \nabla f_t(w_t) - w \|$$

Static Regret Analysis

By the Pythagorean theorem,

$$ \begin{aligned} &\|w_{t+1} - u\|^2 \\ \leq{}& \|w_t - \eta \nabla f_t(w_t) - u\|^2 \\ ={}& \|w_t - u\|^2 + \eta^2\|\nabla f_t(w_t)\|^2 - 2\eta \langle w_t - u, \nabla f_t(w_t) \rangle. \end{aligned} $$

Since $\|\nabla f_t(w_t)\| \leq G$,

$$\|w_{t+1} - u\|^2 \leq \|w_t - u\|^2 + \eta^2 G^2 - 2\eta \langle w_t - u, \nabla f_t(w_t) \rangle.$$

By telescoping and $\|w_1 - u\|^2 \leq 1$,

$$ \begin{aligned} \sum_{t=1}^T \langle w_t - u, \nabla f_t(w_t) \rangle &\leq \frac{1}{2\eta}\left(\|w_1 - u\|^2 - \|w_{T+1} - u\|^2\right) + \frac{\eta G^2 T}{2} \\ &\leq \frac{1}{2\eta} + \frac{\eta G^2 T}{2}. \end{aligned} $$

From convexity, $f_t(w_t) - f_t(u) \leq \langle w_t - u, \nabla f_t(w_t) \rangle$, hence

$$\sum_{t=1}^T f_t(w_t) - \sum_{t=1}^T f_t(u) \le \sum_{t=1}^T \langle w_t - u, \nabla f_t(w_t) \rangle \leq \frac{1}{2\eta} + \frac{\eta G^2 T}{2}.$$

Setting $\eta = \frac{1}{G\sqrt{T}}$,

$$\sum_{t=1}^T f_t(w_t) - \sum_{t=1}^T f_t(u) \leq G\sqrt{T}.$$

Dynamic Regret Analysis

  • Comparators: $u_1, \ldots, u_T$.
  • Path length: $P_T = \sum_{t=2}^T \|u_t - u_{t-1}\|$.

By similar analysis,

$$\sum_{t=1}^T f_t(w_t) - \sum_{t=1}^T f_t(u_t) \leq \sum_{t=1}^T \frac{\|w_t - u_t\|^2 - \|w_{t+1} - u_t\|^2}{2\eta} + \frac{\eta G^2 T}{2}.$$

The first sum on the r.h.s. is at most

$$\|w_1 - u_1\|^2 + \sum_{t=2}^T \left( \|w_t - u_t\|^2 - \|w_t - u_{t-1}\|^2 \right).$$

By the triangle inequality, the summand is at most

$$ \begin{aligned} &(\|w_t - u_t\| + \|w_t - u_{t-1}\|)(\|w_t - u_t\| - \|w_t - u_{t-1}\|) \\ \le{}& 2 \|u_t - u_{t-1}\|. \end{aligned} $$

Therefore, we have

$$\sum_{t=1}^T f_t(w_t) - \sum_{t=1}^T f_t(u_t) \leq \frac{1 + P_T}{\eta} + \frac{\eta G^2 T}{2}.$$

Setting $\eta \simeq \frac{1}{G \sqrt{T}}$,

$$\sum_{t=1}^T f_t(w_t) - \sum_{t=1}^T f_t(u_t) \lesssim G(1 + P_T)\sqrt{T}.$$

If $u_1 = \cdots = u_T = u$, then $P_T = 0$ and thus the $O(G\sqrt{T})$ static regret bound is recovered.

Adapting to Unknown Path Length

If we knew $P_T$ in advance, we could set the learning rate to $\eta \simeq \frac{1}{G}\sqrt{\frac{1 + P_T}{T}}$ to achieve $O(G\sqrt{(1 + P_T)T})$, but we don’t know $P_T$ in advance.

Observation: For any $\eta > 0$, OGD achieves

$$\sum_{t=1}^T f_t(w_t) - \sum_{t=1}^T f_t(u_t) \lesssim \frac{1 + P_T}{\eta} + \eta G^2 T.$$

Idea: Try multiple learning rates and aggregate their outputs!

Meta-learner and Experts

Ideal learning rate: $\eta^* = \frac{1}{G}\sqrt{\frac{1 + P_T}{T}}$ (unknown).

Let $\eta_{\min} = \frac{1}{G\sqrt{T}}$ and $\eta_{\max} = \frac{\sqrt{T}}{G}$, so that $\eta^* \in [\eta_{\min}, \eta_{\max}]$.

Define a set of learning rates:

$$\mathcal{E} \coloneqq \left\{\eta_i = \eta_{\min} \cdot 2^{i-1} : i = 1, 2, \ldots, \lceil\log_2(\eta_{\max}/\eta_{\min})\rceil + 1\right\}.$$

Observations:

  • $N \coloneqq |\mathcal{E}| = O(\log(\eta_{\max}/\eta_{\min})) = O(\log T)$.
  • $\eta_k \leq \eta^* \leq 2\eta_k$ for some $k \in \{1, 2, \ldots, N\}$.

Let $w_t^1, \ldots, w_t^N \in \mathcal{W}$ be the outputs of OGD with rates $\eta_1, \ldots, \eta_N$.

For every expert $i$, we have

$$\sum_{t=1}^T f_t(w_t^i) - \sum_{t=1}^T f_t(u_t) \lesssim \frac{1 + P_T}{\eta_i} + \eta_i G^2 T.$$

Expert Problem

  • There are $N$ experts $i = 1, 2, \ldots, N$.
  • At round $t$, expert $i$ incurs loss $\ell_{t}(i) \in [0, H]$.

We compute $p_t \in \triangle^N$ based on history $\ell_1, \ldots, \ell_{t-1} \in [0, H]^N$ to compete against any expert $i^*$ in expectation:

$$\text{Regret}(i^*) = \sum_{t=1}^T \langle p_t, \ell_t \rangle - \sum_{t=1}^T \ell_{t}(i^*).$$

Hedge Algorithm

Let $\epsilon = \frac{1}{H}\sqrt{\frac{\log N}{T}}$ and assign smaller probabilities to experts with larger cumulative losses:

$$p_{t,i} \propto \exp\left(-\epsilon \sum_{s=1}^{t-1} \ell_{s}(i) \right).$$

The regret against any expert $i^*$ is bounded as follows (see, e.g., Hazan’s book for the proof):

$$\text{Regret}(i^*) = \sum_{t=1}^T \langle p_t, \ell_t \rangle - \sum_{t=1}^T \ell_{t}(i^*) \lesssim H\sqrt{T \log N}.$$

Combining for Dynamic Regret Bound

At each $t$:

  • Expert $i$ computes $w_t^i$ by OGD with $\eta_i$.
  • Learner outputs $w_t = \sum_{i=1}^N p_{t,i} w_t^i$.

Define $\ell_{t}(i) \coloneqq \langle w_t^i, g_t \rangle + G \in [0, 2G]$, where $g_t = \nabla f_t(w_t)$.

For every $i^*$, by convexity,

$$\sum_{t=1}^T f_t(w_t) - \sum_{t=1}^T f_t(w_t^{i^*}) \leq \sum_{t=1}^T \langle w_t - w_t^{i^*}, g_t \rangle.$$

If $p_t \in \Delta^{N}$ is computed by Hedge, the r.h.s. is bounded by

$$ \begin{aligned} \sum_{t=1}^T \left\langle \sum_{i=1}^N p_{t,i} w_t^i , g_t \right\rangle - \sum_{t=1}^T \langle w_t^{i^*}, g_t \rangle &= \sum_{t=1}^T \langle p_t, \ell_t \rangle - \sum_{t=1}^T \ell_{t}(i^*) \\ &\lesssim G\sqrt{T \log N}. \end{aligned} $$

In particular, this is true for $i^* = k \in \mathcal{E}$ such that $\eta_k \leq \eta^* \leq 2\eta_k$.

  • Meta-regret against expert $k$: Recalling $N = O(\log T)$,
$$\sum_{t=1}^T f_t(w_t) - \sum_{t=1}^T f_t(w_t^k) \lesssim G\sqrt{T \log \log T}.$$
  • Expert $k$’s regret: Recalling $\eta^* = \frac{1}{G}\sqrt{\frac{1 + P_T}{T}}$,
$$ \begin{aligned} \sum_{t=1}^T f_t(w_t^k) - \sum_{t=1}^T f_t(u_t) & \lesssim \frac{1 + P_T}{\eta_k} + \eta_k G^2 T \\ &\le \frac{1 + P_T}{\eta^*/2} + \eta^* G^2 T \lesssim G\sqrt{T(1 + P_T)}. \end{aligned} $$

Therefore, ignoring $\log\log T$, we obtain

$$\sum_{t=1}^T f_t(w_t) - \sum_{t=1}^T f_t(u_t) \lesssim G\sqrt{T(1 + P_T)}.$$

Reference:

Zhang et al., NeurIPS ‘18: “Adaptive online learning in dynamic environments”

Their proof eliminates the $\log\log T$ factor by a more careful analysis of the Hedge algorithm with a more sophisticated choice of initial probability.

Proof sketchBy setting the initial probability as $p_{1,i} \propto \frac{1}{i(i+1)}$, we can show $$ \begin{aligned} \text{Regret}(i^*) = \sum_{t=1}^T \langle p_t, \ell_t \rangle - \sum_{t=1}^T \ell_{t}(i^*) &\lesssim \frac{1}{\varepsilon}\ln \frac{1}{p_{1,i^*}} + \varepsilon \sum_{t=1}^T \langle p_t, \ell_t^2 \rangle \\ &\lesssim \frac{1}{\varepsilon}\ln i^* + \varepsilon G^2T. \end{aligned} $$

With $\varepsilon \simeq \frac{1}{G\sqrt{T}}$, for $i^* = k$, we get $\text{Regret}(k) \lesssim G\sqrt{T}\ln k.$ From $\eta_k \le \eta^*$, we can show $k \lesssim \log_2(1 + P_T)$, and hence the $\log\log T$ factor reduces to $\log\log(1 + P_T)$, which is ignorable.

Subsequent works obtained data-dependent bounds, e.g., Zhao et al. JMLR 2024.

Other topics on learning rate tuning:

  • AdaGrad
  • Universal OCO
  • Parameter-free OCO
  • The Road Less Scheduled
  • Gradient Descent: The Ultimate Optimizer